A Multiple Hypothesis Approach to Figure Tracking
نویسندگان
چکیده
This paper describes a probabilistic multiple-hypothesis framework for tracking highly articulated objects. In this framework, the probability density of the tracker state is represented as a set of modes with piecewise Gaussians characterizing the neighborhood around these modes. The temporal evolution of the probability density is achieved through sampling from the prior distribution, followed by local optimization of the sample positions to obtain updated modes. The multimodal nature of this representation endows significantly greater robustness when tracking through ambiguous events than a unimodal tracker. The quasi-parametric form of the model is suited for highdimensional state-spaces which cannot be efficiently modeled using a non-parametric approach. Results are shown for tracking Fred Astaire in a movie dance sequence.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملA Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کاملFootball player tracking from multiple views - using a novel background segmentation algorithm and multiple hypothesis tracking
In this work, our aim is to develop an automated system which provides data useful for football game analysis. Information from multiple cameras is used to perform player detection, classification and tracking. A background segmentation approach, which operates with the invariant Gaussian colour model and uses temporal information, is used to achieve more accurate results. Information derived a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999